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Abstract

AT applications in finance including those for the probability of default modeling largely
involve using ML classification tools. Oversampling the very minor (very underrepresented)
class of defaulted borrowers seems to be a must-be-done step always. However, by crunch-
ing more than a thousand of confidence intervals for the classification accuracy metrics, we
demonstrate when such oversampling is worth engaging in. Moreover, we argue to what por-
tion of total initial sample size such oversampling should be carried out. Our findings are
valuable primarily for the credit risk modeling and Internal Ratings Based (IRB) banks, but
are not limited to those and have general applications for the binary classifications in ML
domain.
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I prefer true but imperfect knowledge,
even if it leaves much indetermined and unpredictable,
to a pretence of exact knowledge that is likely to be false.

Hayek (1974), Nobel Prize lecture

1 Introduction

The Basel Committee report BCBS (2017) might be named the first formal recognition of the
material artificial intelligence (AI) proliferation in the finance domain. Formally, it even led to
the introduction of the new terms like FinTech, RegTech, and SupTech. At the time the committee
saw only technological risks posed by the proliferation of AI, machine learning (ML), and advanced
data analytics considered jointly. As a result, the committee recommended strengthening the
information technologies (IT) with which the bank is equipped, see (BCBS, 2017, pp. 28).

Since then the AI/ML use made that significant progress that the associated risks stopped
being limited solely by IT ones. More conceptual issues arose. Those include the ethical ones
whether an algorithm should be allowed or not to discriminate one cohort of customers to the
detriment (rarely - to the benefit) of another. This led to the discussion of the ethical probability
of default (PD) models in papers like Fuster et al. (2018); Szepannek and Luebke (2021). The
European Parliament extended the discussion by making an unprecedented step and publishing a
pan-European Al regulation act, see Europarliament (2023).

So far, it seems that methodologically everything is clear with the development of Al in finance,
and it is only the issue of the available (sufficient) computational capacities. Such thoughts gave
rise to the terms of GPU-rich and GPU-poor companies distinguishing companies which have
enough access to the needed graphical processing unit (GPU) capacities and those which do not
have, see The Economist (2024).

However, today seems to be right the time when we may fall into the fundamental trap created
by our obsession with the exact prediction and hence recommendation skills of AT modules driven
by the underlying ML solutions. The nature of the trap is as follows. The recent ML trend allows
software to elaborate own programming codes and models, in particular (though still far from
ideally targeted ones as developed by experienced coders). The Al solution of interest is likely to
continue reprogramming the specific model as far as its output performance (accuracy) metrics
outpaces that of the previous one. Such a process goes on as in most cases it is the point estimates
of the performance metrics which rise, though sometimes at a tiny growth rate. From the outside
perspective such an improvement process in addition vastly consumes GPU power making any
company GPU-poor in essence.

Nevertheless, the improvement process is not as endless as it seems and as it was in the legend
when Achilles failed to outrun the turtle. In fact, most models become similar when the model
performance metrics reach a particular threshold for a combination of classes and features. Such
similarity is well captured by the confidence intervals (CI) for the performance metrics, which
unfortunately are not that wide-spread though well-known in the probability theory. Hence, if
the AI algorithm for a credit scoring or fraud detection in finance reached the stage when the
upper boundary of the accuracy metrics CI is almost equal to one (to 100%), it is clear that any
novel model cannot discriminate poor borrowers from good ones any better (unless there happens
a region-wide shock and overall model prediction quality deteriorates). This could mean that Al
software may get rise in efficiency by not crunching the code and numbers any longer and by
economizing the GPU capacity for other tasks.

The use of confidence intervals for the performance metrics of ML models in finance is not
novel. Moreover, the cases when one of the two classes is materially underrepresented is also
known (consider the term low-default portfolio (LDP), for instance). Oversampling minor class is



a typical industry solution. However, no one, to the best of our knowledge, studied the confidence
intervals evolution for the performance metrics of the models in finance when such oversampling
is undertaken. We intend to close this gap.

As a preview of our findings, we show that excessive oversampling (at the extreme when
equalizing the proportions of the minor and major classes) leads to the rise in the width of
the confidence intervals of the performance metrics making models more indistinguishable from
each other, and by overall sacrifizing the model performance quality. The practical implication
from here is to oversample at a limited degree. Then and only then the model developer (or Al
software supposedly at the near future) may be able to evidence the true improvement in the
model performance.

To explain how we arrive at our findings, we start with the literature review in Section 2. We
describe the methodology in Section 3. The findings follow in Section 4. We conclude in Section 5.

2 Literature review

Al applications in finance, though numerous, can be broadly grouped into several groups of which
classification tasks continue occupying important place. Those tasks might include distinguishing
good and bad borrowers, clients prone to churn and not, online users willing to choose a product
or not, fraudsters and general users. Solving classification (properly discriminating) in-between
these two groups forms the basis for further recommendation system development.

Hence, it is vitally important to be efficient in solving classification tasks when applying Al
and ML in finance. Seems lots has been discussed about it in Mirkin (2016); Raschka and Mirjalili
(2019), for instance. However, gaps still exist. Those relate to situations when one of two classes
is materially underrepresented (such a class might be called a very minor one, while the residual
class is a major one). A fast, but not always worthy typical solution is to oversample. This is why
we intend to study consequences of such a step given often omitted specifics for the confidence
intervals when applied to the classification accuracy metrics.

To do so, we first discuss the papers when dealing with minor classes is not a one-off case.
Namely, it is the domain of probability of default (PD) modeling and developing PD models
for banks specifically. Nevertheless, the findings are of value to other areas, including inter alia
(cyber-)fraud detection. Second, we remind approaches to handling minor class when it might
be assumed to be underrepresented in a non-systematic manner. This is where the suggestion to
oversample the minor class is being born. Third, we focus on how to choose the best classification
model as it is exactly the criteria which are intended to be improved when oversampling. Forth,
we rehearse the importance of monitoring the confidence intervals for the classification metrics,
not limited to their mean values.

2.1 PD modeling

The first formal probability of default (PD) models were proposed in the papers by Beaver (1966);
Altman (1968); Ohlson (1980). Authors of these papers used quite countable number of observa-
tions driven by the computational capabilities of the first computers. Often those equaled couple
of dozens company-year (or just company) observations. Moreover, the samples of defaulted and
non-defaulted companies typically equalled in size giving no rise to the issue of handing a minor
class.

Since then software and financial services industries evolved that much that PD models started
being considered as part of the financial regulation. Formally, the Basel Committee on Banking
Supervision (BCBS) allowed them as a part of the Basel I Internal Ratings-Based (IRB) approach,
see BCBS (2006). Prior to formal adoption, the committee published a comprehensive survey of
progress in classification models development, and more specifically to that of PD models in BCBS



(2000). Highly likely it was that the PD model conceptual approval by the international financial
regulation standards setter of BCBS triggered the research boom in the area.

As a result, we come across the use of conventional econometric and multivariate statistical
analysis tools to develop PD models as discussed by Kumar and Ravi (2007); Altman (2018). Same
time the use of ML tools gains its popularity as can be seen from the following non-exhausting
list of papers: Chen et al. (2006); Fantazzini and Figini (2009); Korol and Korodi (2010); Tinoco
and Wilson (2014); Geng et al. (2015); Jabeur and Fahmi (2018); Shibitov and Mamedli (2019);
Qu et al. (2019); Dendramis et al. (2020); Kim et al. (2020); Moscatelli et al. (2020); Kim et al.
(2021); Faraj et al. (2021); Pang et al. (2021); Merc¢ep et al. (2021); Liu et al. (2022).

PD models were developed for many localities. To name a few, Jabeur and Fahmi (2018)
considered France, Chen et al. (2006); Liu et al. (2022) - China, Altman et al. (2008) - the UK,
Tian and Yu (2017) - Japan, Bisogno et al. (2018) - the EU, Kristéf and Virdg (2020) - Hungary,
Mercep et al. (2021) - Croatia.

Most academic papers present PD models for the retail borrowers as the segment is typically
characterized by the enormous number of observations and defaults. PD models for corporate
borrowers appear less often, while banks are the rarest research objects. For instance, they are
handled in the following relevant works: Brauning et al. (2020); Durand et al. (2021) for the
EU, Yuksel et al. (2015) for Turkey, Shrivastava et al. (2020) for India, Ko¢enda and Iwasaki
(2022) for Japan, Kocagil et al. (2002); Moody’s Analytics (2016); Cole et al. (2020) for the USA,
Obeid (2021) for the Persian Gulf countries, and Cheong and Ramasamy (2019); Krist6f (2021)
for others. Relevant reviews are available at Kumar and Ravi (2007); Citterio (2020).

Table 1: Why dealing with a tiny class is important?

# | Paper Class | Country Method | Freq. | Pred.Hor. | Period | # X vars | # obs. (N) | # Def. (D) | DR=D /N
1 | Kocagil et al. (2002) Banks | USA probit Y 1Y, 5Y | 1982-2002 | 15 —> 6 140000 400 0,0029
2 | Moody’s Analytics (2016) Banks | World (90x) | [probit] Y 1Y, 5Y | 1988-2012 | 6 33000 200 0,0061
3 | Shibitov and Mamedli (2019) | Banks | Russia ML M 1-9M 2014-18 | 35 > 721 34096 354 0,0104
4 | Ferriani et al. (2019) Banks | Italy logit Q 4-6Q 2008-16 | 18 9571 195 0,0204

Note: Freq. - data frequency.

The reason for such rarity of the PD model for banks can be vividly seen from the illustrative
table 1. Nowadays, as well as 20 years ago, financial institutions (FI) tend mostly not to default.
The proportion of defaulted cases at maximum approaches 2% of the total sample, being as small
as less than half of the percentage point (see last column of table 1). This is why financiers tend
to call the FI segment a low default portfolio (LDP). A1/ML practitioners eagerly see the problem
(defaulted) cases in the segment as the wvery minor class with the non-defaulters being a very
major one.

2.2 Missing data and oversampling

Though the FI segment is not rich in defaults, the financiers solicited PD models for the segment.
There are several solutions on how to act, according to (Raschka and Mirjalili, 2019, pp. 267-270):

e to oversample the minor class, Liu (2021); Nunes et al. (2021);
e to undersample the major class.
e to imput missings, Audigier et al. (2021);

Koziarski (2021) opts for a combination of over- and undersampling. However, oversampling is
grounded on the strong assumptions. According to Rubin (1976) classification, it is assumed that
the data (default cases) is missing either completely at random (MCAR), or just at random (MAR).
However, Carreras et al. (2021) argues that if the data is of MCAR type, then oversampling is
not needed, as one is to add pure noise not-impacting the model of interest.
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On the contrary, the possibility of data being missing not at random (MNAR) is rarely checked.
To be fair, in the absence of extra defaults, the feasibility of such verification by itself is under
question. Pereira et al. (2019) offers arguments to ignore MNAR, as it stems from situations when
the data was not collected or was wrongly collected via a survey. Financial default data has a
more regular nature, and only extreme force-major events might trigger systematic unaccounting
of many default cases. Alternatively, when wishing to handle MNAR cases, one may drift towards
Heymans and Twisk (2022) who suggests modeling the missing data. But to do so, one should
properly study such MNAR cases, then calibrate the data generating process parameters. One
can do the latter step only by using the available limited (LDP) cases. Hence, we also neglect the
possibility of MNAR observations here.

2.3 Classification accuracy (model performance) metrics

ML practitioners tend to oversample minor class as rule of thumb. Our objective here is to
demonstrate cases when such oversampling is worth undertaking and when it is not. To answer
this question, we should first inquire what objective is targeted when oversampling. The ML
practitioners seek to improve (increase) the model quality (its performance metrics), i.e., the
model developers wish the model to better discriminate (segment, classify, cluster) the incoming
data into two classes (in case of PD model into defaulters and non-defaulters). The industry-
standard is to look at precision, recall, accuracy, F1 indicators. The respective formulas are
available in eq. (1) - (4).

TP
Precision — ———~ 1
recision = pm (1)
where TP, FP are illustrated in Table 2.
TP
- - 2
Recall TP PN (2)

where FN is presented in Table 2.

AUROC for the developed model 3)
AUROC for the per fect model ’
where the numerator and denominator are computed after deducting the common surface (triangle)

under the bisector line. We may recommend Engelmann et al. (2003) as one of the earlier papers
in the finance domain for more details on AUROC use for the PD modeling.

Accuracy =

2. Precision - Recall 2
Precision + Recall ~ (1/Recall) + (1/Precision)’

P = (4)

Table 2: Stylized default (success) prediction matrix to analyze model accuracy.
| | Actual | |

| Predicted | S (D) | F (ND) | Total |
S (D) True positives (TP) | False positives (FP) | - P
F (ND) | False negatives (FN) | True negatives (TN) | - N

| Total | | | n |

Note (conventional suggested by us for the purposes of the current study):
minor class : S - success, or D - default; major class: F - failure, or ND - non-default;

n stands for the total number of observations.



2.4 Confidence intervals for proportions

We have evidenced above that PD models are well-studied, accuracy metrics are also commonly
known. However, the problem - inter alia with the growing number of papers published and
offering the better discriminating PD models - is that authors get obsessed with the improvement
solely based on the mean values (point estimates) of the classification metrics of interest, e.g.,
(Faraj et al., 2021, p. 24, Tab. 2), (Kim et al., 2021, p. 170, Tab. 4), (Pang et al., 2021, p. 10),
(Mercep et al., 2021, p. 10, Table 1 - p. 12, Table 6), (Song et al., 2021, p.1489, Table 1), (Liu
et al., 2022, p. 10, Tab. 8).

Nevertheless, we should not forget that the performance metrics combine the number of reali-
sations of a random variable, (often a dummy flag taking one in case of default and zero otherwise).
They differ from each other in a way of such combination. Disregarding the mode of combination,
the accuracy metrics by construction are still random variables in themselves. It means that the
mere dominance (excess in arithmetic terms) of one point estimate over another may correspond
to a probabilistically equal values. To correctly judge upon the superiority of a particular model,
when comparing PD models, one has to look at the confidence intervals of performance metrics,
not limited to their point estimates. Moreover, as every accuracy metrics is a proportion by
construction ranging from zero to one, one should specifically look at the confidence intervals for
(binomial) proportions.

The development of the confidence intervals (CIs) for proportions has passed through the
following stages:

1. Wald CI, or normal approximation, see formula (5);

CIY = (S/n) +/ = Yay2 - \/(S/n) (L= (5/m)] (5)

n

where 7,2 = N™'(a/2) is the quantile of the Normal (Gaussian) distribution at the /2
significance level, n is the total number of observations, S is the number of successes (F' is
the number of failures, so that n = S + F).

2. Wilson CI, see formulas (6)

S+ (12/2) VISE)n?] + (22 /4)

CIW +/_’7a2'
n+7§/2 / n+72/2

where 7,/2 = A = 2 is recommended in most cases, see (Wilson, 1927, p. 212).

3. Clopper-Pearson (beta) CI, see (Dunnigan, 2008, p. 3), formulas (7), (8);

1
CI¢? = ’ "
L 1+ 22+ By s41),25,0/2

where F,, , - is the F-distribution with (u, v) degrees of freedom valued at +y significance level.

S+1
CpCoP _ s iAs ) 20-8) a2
U 14+ 5+l@ :
P Fo(s41) 2(n-5),0/2

(8)

Orawo (2021) notes that Clopper-Pearson CI is more conservative, but wider than it is
sufficient.



4. Agresti-Coull (AC) CI from (Agresti and Coull, 1998, p. 120), see formula (9);

2 SF)-[1 2,/2 4 /4
O]ACZSTaéQ/z) I V(5F) L+ 02D+ Ol o
T Va2 n+ Y

5. Jeffreys CI, see formulas (10), (11);

CI] = Beta(a/2; S+ 1/2,n — S +1/2), (10)

CI = Beta(l — a/2;S +1/2,n — S +1/2), (11)

where Beta(a, ay,az) is the a-quantile of the Beta distribution with parameters a; and as,
see (Brown et al., 2001, p. 108, eq. (7), (8)); L and U indicate lower and upper boundaries
of the confidence interval.

Brown et al. (2001) above all recommend using Jeffreys interval instead of normal approxi-
mation, as well as instead of Wilson’s and Agresti-Coull’s ones.

3 Simulation experiment design

3.1 Concept

We wish to study how confidence intervals for the classification accuracy metrics evolve under
various scenarios. We look at three starting values of the minor class (e.g., default rates, DR): 0.1,
3.0, 10.0% of the total number of observations. These portions are the starting (baseline) values.
We oversample them to reach up to 50% of the initial number of observations. For instance, take
a DR = 0.001 (0.1%). The total number of observations is 20k, it yields us with 20 default cases
and 19 080 non-default ones. When oversampling to 50% of the initial set, we get 10k defaults
instead of just 20 ones. Hence, the new sample size is 10k + 19080 = 39080 observations. As for
the DR=0.1% we run extra oversampling iterations to 10, 20, 30, 40% to be able to identify the
threshold at which the CI width starts changing.

We use ten core features (independent factors) to delineate minor class observations from the
major ones. We consider four possible factor combinations. We start with the availability of all
10 core features, then we add extra redundant 5 features to have 15 in total. Next, we deduct 5
core ones from the initial set and proceed with 5 core features. Last, we add 5 redundant features
to the 5 core ones left from the previous stage.

For each model we evaluate four classification metrics as presented in subsection 2.3. For each
of the metrics we present five confidence intervals (Cls) discussed in subsection 2.4. Hence, we
derive five CI widths as differences between the CI lower boundary (_ L) and its upper one (_U).

When the CI width augments, the models become less distinguishable. Hence, it becomes more
difficult to offer another model statistically (probabilitistically) outpacing the value of the current
accuracy metrics value. Thus, we are interested in cases when the CI width shrinks. Then models
are more divisible. Having built a new model it is more likely to evidence that it is superior to
the existing one all else being equal.



3.2 Parameter specification

We use the make classification package in Python to generate initial data with the default flags
(zeros and ones) and accompanying values of the so called (hypothetical) informative risk-drivers
(core features). The raw features’ values are drawn from the standard normal distribution. A cut
threshold is applied to a linear combination of factors in order to obtain the targeted proportion
of the minor class.

We add noise to our classification via a flip y parameter. It is the portion of observations to
which the class (default flag) is assigned randomly. By default, its value is 0.01. We took it equal
to 0.5.

To oversample, we use an imblearn.over sampling library with the SMOTE method,
Chawla et al. (2002). We change the sampling strategy parameter to obtain new portions of
the minor (resampled) class. The new observations are not mere duplicates of the existing ones.
They have the features values drawn from the empirical (non-parametric) distribution fitted for
the minor class observations.

To build a model, we use GridSearchCV package in Python. We maximize F'1 metrics and
report confidence intervals for it. Overall, we fit 64 models and look at 1.2k confidence intervals.

The data simulation details are available in Annex A.

4 Findings

Here we enlist the key findings which we obtain from our simulation experiment (table 3 contains
the details on the average widths of the five considered CIs for the F1 metrics):

1. The width of the CI is proportionate to the share of the minor class, e.g., the lower the
default rate (DR) is, the narrower the CI is, compare D1 to D7 (1.5% vs 0.3%) in table 3;
see also figure 1.

Figure 1: Higher portion of minor class imply wider CI.
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2. When the portion of the minor class (DR) is low (below 5%), making some core features
unavailable leads to the increase in the CI width, compare D3 to F3 (1.1% vs 1.3%) and D7
to F7 (0.3% vs 0.4%) in table 3. However, when the portion is larger (e.g., 10%), we may
observe reduction of the CI width, compare D1 to F1 (1.54% vs 1.46%) in table 3.

3. Adding more noise (extra redundant features) widens the CI when oversampling from a very
tiny class to equal proportions case (from 0.1% to 50%), compare D16 to E16 (1.2% vs 1.4%)
and F16 to G16 (1.1% vs 1.5%) in table 3. In other cases, we do not trace neither material
deterioration, nor improvement in CI width.
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4. Oversampling to equal class shares (50:50%) mostly often leads to deterioration (CI widen-
ing), compare D3 to D6 (1.1% vs 1.3%) and rows 1 to 2 in table 3. However, in a realistic
set-up (column G) when we know part of core drivers and also include several redundant
ones, oversampling not a very minor class (DR ~ 3%) might improve the situation and make
CI narrower, compare F3 to F6 (1.36% vs 1.28%) and G3 to G6 (1.4% vs 1.1%) in table 3.

5. Oversampling the very minor class might be reasonable when considering moderate pace of
resampled observations. For instance, oversampling DR of 0.1% enables to slightly reduce
the CI width when the portion reaches 3-5%, but above that the CI width starts rising,
compare rows 7 to 10 and 11 in table 3; see also figure 2.

Figure 2: Oversampling very minor class improves (narrows) CI, but for mild resampling.
0.016
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0.008
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0.004
0.002

Cl_width
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- o -baseline (10 core features)
——add extra (redundant) 5 features

—e—deduct 5 core and add 5 redundant features (10 left in total)

6. Oversampling often leads not merely to CI widening, but also to overall model performance
deterioration. As a result, CI shifts down, see figure 3.

Figure 3: Oversampling very minor to equal portions not only widens the CI, but also drastically

reduces the mean performance (shifts the CI down).
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However, we do not notice material differences in the application of different CI types, all of
the five ones move in tandem for both low and high initial portions of the minor class, see
figure 3.



5 Conclusion and practical implications

Al is nowadays thought of being an indispensable element of future progress in finance. Such
progress encapsulates the proliferation of the ML models’ use for the numerous classification
tasks, including the discrimination of good from bad borrowers, i.e., for the development of the
probability of default (PD) models.

We show that PD model developers often face a challenge when coming across an underrepre-
sented (minor) class. As a remedy, they solicit industry-wide practice of oversampling the minor
class. This is why we focus on PD models, though our findings spread far beyond PD modeling,
and are generally applicable to any binary classification task.

We manage to dig deeper into the properties of models when the underlying data is oversam-
pled. Importantly, we show the thresholds to which it is worth oversampling the minor class given
its initial portion. For instance, when the portion is moderately small one (around 3% of the total
sample size), one may benefit from oversampling it to 50%. However, when the initial class is very
tiny (around 0.1% of total number of observations), it might be worth oversampling only to 3-5%
of the total number of entries. Moreover, we argue that such a gain in (narrowing of) confidence
interval for the PD model performance might be achieved with the trade-off by losing the overall
model performance (the CI mid value materially goes down).

We offered a statistical table which might be used by practitioners as a guide when to oversam-
ple the data or not. The enclosed programming code in Python allows gathering the equivalent
answer for any combination of initial portion of the minor class, number of core and redundant
features, the considered oversampling proportions.
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Annex

Table 3: Summary of simulation experiments.

A B C D E F G

row Model Type | DR baseline (10 add extra deduct 5 core deduct 5 core

# core features) (redundant) 5 features (5 and add 5 re-
features core left) dundant fea-

tures (10 left
in total)

1 Baseline 0.1 0.0154 0.0154 0.0146 0.0146

2 Oversampled | 0.5 0.01636 0.01642 0.02184 0.02188

3 Baseline 0.03 | 0.0112 0.0112 0.0136 0.0136

4 Oversampled | 0.05 | 0.0115 0.0115 0.0138 0.0138

5 Oversampled | 0.1 0.0117 0.0117 0.0143 0.0143

6 Oversampled | 0.5 0.0125 0.0125 0.0128 0.011

7 Baseline 0.001 | 0.0027 0.0027 0.0043 0.0043

8 Oversampled | 0.005 | 0.0028 0.0027 0.0042 0.0042

9 Oversampled | 0.01 | 0.0028 0.0027 0.0042 0.0042

10 Oversampled | 0.03 | 0.0028 0.0027 0.0041 0.0041

11 Oversampled | 0.05 | 0.0025 0.0026 0.0041 0.0041

12 Oversampled | 0.1 0.0026 0.0027 0.0042 0.0043

13 Oversampled | 0.2 0.0035 0.0056 0.0052 0.0052

14 Oversampled | 0.3 0.0052 0.0105 0.0052 0.0083

15 Oversampled | 0.4 0.0076 0.0128 0.0052 0.0117

16 Oversampled | 0.5 0.0121 0.014 0.011 0.0149

Note: DR - default rate (proportion, share of the minor class). Underlying confidence interval boundaries
are presented in the Technical Annez (available from the authors upon request).
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from
from
from
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from
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from
from

from
from

rt os
rt sys

sklearn

sklearn
sklearn

A Synthetic data simulation in Python

.model_selection import train_test_split
sklearn.
sklearn.
sklearn.
sklearn.
sklearn.

linear_model import LogisticRegression, SGDClassifier, LinearRegression
discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscrii
ensemble import RandomForestClassifier, GradientBoostingClassifier
neural_network import MLPClassifier

datasets import make_classification

.metrics import classification_report

import metrics

statsmodels.stats.proportion import proportion_confint

sklearn.

model_selection import GridSearchCV

import matplotlib.pyplot as plt
import seaborn as sns

import pandas as pd

import numpy as np

import statistics
from math import sqrt
from imblearn.datasets import make_imbalance

import warnings
warnings.filterwarnings(’ignore’)

mode

1 1list =

[’normal’, ’agresti_coull’, ’beta’, ’wilson’, ’jeffreys’]

def explode_confusion_matrix(cm):

def

TP = cm[0] [0]
FP = cm[0] [1]
FN = cm[1] [0]
TN = cm[1] [1]

return TP, FP, FN, TN

return_metrics(TP, FP, FN, TN):

acuuracy

= (TP+TN) / (TP+TN+FP+FN)

precision = TP/(TP+FP)

recall =

TP/ (TP+FN)

f1 = 2% ((precision*recall)/(precision + recall))

return acuuracy, precision, recall, fl
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def

def

count_success (TP, FP, FN, TN):

success_accuracy = TP + TN
unsuccess_accuracy = FP + FN

success_precision = TP
unsuccess_precision = FP

success_recall = TP
unsuccess_recall = FN

success_f1 = 2xTP
unsuccess_£f1 = FN+FP

return sSuccess_accuracy, unsuccess_accuracy, SUCCGSS_pI‘eCiSiOIl, unsuccess_precisL

make_bounds (success_accuracy, unsuccess_accuracy, success_precision, unsuccess_pr

model_list_ = []

proportion_accuracy_ci_low_ =
proportion_precision_ci_low_ =
proportion_recall_ci_low_ = []
proportion_f1_ci_low_ = []

proportion_accuracy_ci_up_ = []
proportion_precision_ci_up_ =
proportion_recall_ci_up_ = []
proportion_fi_ci_up_ = []

for model in model_1list:

proportion_accuracy_ci_low, proportion_accuracy_ci_up = proportion_confint(su
proportion_precision_ci_low, proportion_precision_ci_up = proportion_confint(
proportion_recall_ci_low, proportion_recall_ci_up = proportion_confint(succes
proportion_f1_ci_low, proportion_fl1_ci_up = proportion_confint(success_f1, su

model_list_.append(model)

proportion_accuracy_ci_low_.append(proportion_accuracy_ci_low)
proportion_precision_ci_low_.append(proportion_precision_ci_low)
proportion_recall_ci_low_.append(proportion_recall_ci_low)
proportion_f1_ci_low_.append(proportion_f1_ci_low)

proportion_accuracy_ci_up_.append(proportion_accuracy_ci_up)
proportion_precision_ci_up_.append(proportion_precision_ci_up)
proportion_recall_ci_up_.append(proportion_recall_ci_up)
proportion_f1_ci_up_.append(proportion_f1_ci_up)
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models_frame = pd.DataFrame()

models_frame[’approximation’] = model_list_

models_frame[’accuracy_ci_low’] = proportion_accuracy_ci_low_
models_frame[’accuracy_ci_up’] = proportion_accuracy_ci_up_

models_frame[’precision_ci_low’] = proportion_precision_ci_low_
models_frame[’precision_ci_up’] = proportion_precision_ci_up_

models_frame[’recall_ci_low’] = proportion_recall_ci_low_
models_frame[’recall_ci_up’] = proportion_recall_ci_up_

models_frame[’fl_ci_low’] = proportion_fi_ci_low_
models_frame[’fl_ci_up’] = proportion_fl_ci_up_

models_frame[’accuracy_width’] = models_frame[’accuracy_ci_up’] - models_frame[’a
models_frame[’precision_width’] = models_frame[’precision_ci_up’] - models_framel[
models_frame[’recall_width’] = models_frame[’recall_ci_up’] - models_frame[’recal
models_frame[’f1_width’] = models_frame[’fl_ci_up’] - models_frame[’fl_ci_low’]

return models_frame

def make_classification_matrix(X, y):

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_s

# GridSearchCV params

param_grid_logit = [

{

’penalty’ : [’11’, °12°, ’elasticnet’, ’none’],
>C’ : np.logspace(-4, 4, 20),
>solver’ : [’1lbfgs’,’newton-cg’,’liblinear’,’sag’,’saga’],

‘max_iter’ : [10, 100, 500, 1000]

param_grid_sgdc = [

{

>loss’ : [’hinge’, ’log’, ’modified_huber’, ’squared_hinge’, ’perceptron’
’penalty’ : [’11’, ’12°, ’elasticnet’],

’alpha’ : [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000],

>learning_rate’ : [’constant’, ’optimal’, ’invscaling’, ’adaptive’],

>class_weight’ : [{1:0.5, 0:0.5}, {1:0.4, 0:0.6}, {1:0.6, 0:0.4}, {1:0.7,
’etal’ : [1, 10, 100]
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param_grid_lda = [

{
’solver’: [’svd’, ’lsqr’, ’eigen’]
}
]
param_grid_qda = [
{
’reg_param’: [0.1, 0.2, 0.3, 0.4, 0.5]
}

param_grid_rfc = [

{
’n_estimators’: [25, 50, 100, 150],
‘max_features’: [’sqrt’, ’log2’, Nonel],
’max_depth’: [3, 6, 9, 12],
’max_leaf_nodes’: [3, 6, 9, 12]

+

param_grid_mlpc = [

{
’hidden_layer_sizes’: [(10,30,10),(20,)],
’activation’: [’tanh’, ’relu’],
’solver’: [’sgd’, ’adam’],
>alpha’: [0.0001, 0.05],
>learning_rate’: [’constant’,’adaptive’]
}

clf_logit = GridSearchCV(LogisticRegression(), param_grid = param_grid_logit, cv :
y_pred_logit = clf_logit.predict(X_test)
cnf_matrix_logit = metrics.confusion_matrix(y_test, y_pred_logit)

clf_sgdc = GridSearchCV(SGDClassifier(), param_grid = param_grid_sgdc, cv = 3, ve:
y_pred_sgdc = clf_sgdc.predict(X_test)
cnf_matrix_sgdc = metrics.confusion_matrix(y_test, y_pred_sgdc)

clf_1lda = GridSearchCV(LinearDiscriminantAnalysis(), param_grid = param_grid_lda,
y_pred_lda = clf_lda.predict(X_test)
cnf_matrix_lda = metrics.confusion_matrix(y_test, y_pred_lda)

clf_qgda = GridSearchCV(QuadraticDiscriminantAnalysis(), param_grid = param_grid_q

y_pred_qda = clf_qda.predict(X_test)
cnf_matrix_gda = metrics.confusion_matrix(y_test, y_pred_qgda)
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def

clf_rfc = GridSearchCV(RandomForestClassifier(), param_grid = param_grid_rfc, cv :
y_pred_rfc = clf_rfc.predict(X_test)
cnf_matrix_rfc = metrics.confusion_matrix(y_test, y_pred_rfc)

clf _mlpc = GridSearchCV(MLPClassifier(max_iter=100), param_grid = param_grid_mlpc
y_pred_mlpc = clf_mlpc.predict(X_test)
cnf_matrix_mlpc = metrics.confusion_matrix(y_test, y_pred_mlpc)

return cnf_matrix_sgdc, cnf_matrix_logit, cnf_matrix_lda, cnf_matrix_qda, cnf_mat:

make_classification_matrix_over (X_over, y_over, X_src, y_src):

X_train, X_test = X_over, X_src

y_train, y_test = y_over, y_src
# GridSearchCV params

param_grid_logit = [

{
’penalty’ : [’11’, °’12’, ’elasticnet’, ’none’],
>C’> : np.logspace(-4, 4, 20),
>solver’ : [’1lbfgs’,’newton-cg’,’liblinear’,’sag’,’saga’],
‘max_iter’ : [10, 100, 500, 1000]
}
]
param_grid_sgdc = [
{
>loss’ : [’hinge’, ’log’, ’modified_huber’, ’squared_hinge’, ’perceptron’
’penalty’ : [’11’, °12°, ’elasticnet’],
’alpha’ : [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000],
>learning_rate’ : [’constant’, ’optimal’, ’invscaling’, ’adaptive’],
>class_weight’ : [{1:0.5, 0:0.5}, {1:0.4, 0:0.6}, {1:0.6, 0:0.4}, {1:0.7,
’etal’ : [1, 10, 100]
}
]
param_grid_lda = [
{
’solver’: [’svd’, ’lsqr’, ’eigen’]
+
]
param_grid_qda = [
{
’reg_param’: [0.1, 0.2, 0.3, 0.4, 0.5]
+
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param_grid_rfc = [

{
’n_estimators’: [25, 50, 100, 150],
‘max_features’: [’sqrt’, ’log2’, None],
'max_depth’: [3, 6, 9, 12],
’max_leaf_nodes’: [3, 6, 9, 12]

}

param_grid_mlpc = [

{
’hidden_layer_sizes’: [(10,30,10),(20,)],
’activation’: [’tanh’, ’relu’],
>solver’: [’sgd’, ’adam’],
>alpha’: [0.0001, 0.05],
>learning_rate’: [’constant’,’adaptive’]
+

clf_logit = GridSearchCV(LogisticRegression(), param_grid = param_grid_logit, cv :
y_pred_logit = clf_logit.predict(X_test)
cnf_matrix_logit = metrics.confusion_matrix(y_test, y_pred_logit)

clf_sgdc = GridSearchCV(SGDClassifier(), param_grid = param_grid_sgdc, cv = 3, ve:
y_pred_sgdc = clf_sgdc.predict(X_test)
cnf_matrix_sgdc = metrics.confusion_matrix(y_test, y_pred_sgdc)

clf_lda = GridSearchCV(LinearDiscriminantAnalysis(), param_grid = param_grid_lda,
y_pred_lda = clf_lda.predict(X_test)
cnf_matrix_lda = metrics.confusion_matrix(y_test, y_pred_lda)

clf_qda = GridSearchCV(QuadraticDiscriminantAnalysis(), param_grid = param_grid_q
y_pred_qda = clf_qda.predict(X_test)
cnf_matrix_qda = metrics.confusion_matrix(y_test, y_pred_qda)

clf_rfc = GridSearchCV(RandomForestClassifier(), param_grid = param_grid_rfc, cv :
y_pred_rfc = clf_rfc.predict(X_test)

cnf_matrix_rfc = metrics.confusion_matrix(y_test, y_pred_rfc)

clf _mlpc = GridSearchCV(MLPClassifier(max_iter=100), param_grid = param_grid_mlpc
y_pred_mlpc = clf_mlpc.predict(X_test)

cnf_matrix_mlpc = metrics.confusion_matrix(y_test, y_pred_mlpc)

return cnf_matrix_sgdc, cnf_matrix_logit, cnf_matrix_lda, cnf_matrix_qda, cnf_mat:

23



def

def

def

make_ci_frame(X, y):
cnf_matrix_sgdc, cnf_matrix_logit, cnf_matrix_lda, cnf_matrix_qda, cnf_matrix_rfc
my_frames_ = []

for obs, name in zip([cnf_matrix_sgdc, cnf_matrix_logit, cnf_matrix_lda, cnf_matr
[’cnf_matrix_sgdc’, ’cnf_matrix_logit’, ’cnf_matrix_lda’, ’c

TP, FP, FN, TN = explode_confusion_matrix(obs)

acuuracy, precision, recall, f1 = return_metrics(TP, FP, FN, TN)
success_accuracy, unsuccess_accuracy, success_precision, unsuccess_precision,
models_frame = make_bounds(success_accuracy, unsuccess_accuracy, success_prec
models_frame[’accuracy’] = acuuracy

models_frame[’precision’] = precision

models_frame[’recall’] = recall

models_frame[’f1’] = f1

models_frame[’model’] = name

my_frames_.append(models_frame)

return pd.concat(my_frames_)

make_ci_frame_over (X_over, y_over, X_src, y_src):

cnf_matrix_sgdc, cnf_matrix_logit, cnf_matrix_lda, cnf_matrix_qda, cnf_matrix_rfc
my_frames_ = []

for obs, name in zip([cnf_matrix_sgdc, cnf_matrix_logit, cnf_matrix_lda, cnf_matr
[’cnf_matrix_sgdc’, ’cnf_matrix_logit’, ’cnf_matrix_lda’, ’c

TP, FP, FN, TN = explode_confusion_matrix(obs)

acuuracy, precision, recall, fl1 = return_metrics(TP, FP, FN, TN)
success_accuracy, unsuccess_accuracy, success_precision, unsuccess_precision,
models_frame = make_bounds(success_accuracy, unsuccess_accuracy, success_prec
models_frame[’accuracy’] = acuuracy

models_frame[’precision’] = precision

models_frame[’recall’] = recall

models_frame[’f1’] = f1

models_frame[’model’] = name

my_frames_.append(models_frame)

return pd.concat(my_frames_)

plot_confidence_interval(x, metric, upper, lower, color=’#2187bb’, horizontal_lin
mean = metric

left X - horizontal_line_width / 2

top = upper
right = x + horizontal_line_width / 2
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def

def

bottom = lower

plt.plot([x, x], [top, bottom], color=color)
plt.plot([left, right], [top, topl, color=color)
plt.plot([left, right], [bottom, bottom], color=color)

plt.plot(x, mean, ’0’, color=’#f44336")

make_plots(dataset, metric, lower, upper):

print (metric)

plot_confidence_interval (x
plot_confidence_interval (x
plot_confidence_interval (x
plot_confidence_interval (x
plot_confidence_interval (x

b

3

b

D W N -

3

5,

metric
metric
metric
metric
metric

dataset[dataset[’approximation’]==’"norma
dataset [dataset [’approximation’]==’agres
dataset [dataset [’approximation’]==’beta’
dataset[dataset[’approximation’]=="wilso:
dataset[dataset [’approximation’]==’jeffr

plt.xticks([1, 2, 3, 4, 5], [’normal’, ’agresti_coull’, ’beta’, ’wilson’,’jeffrey

plt.show()

make_latex(df):

print (df.to_latex().replace(’_’, ’\_?))

print (°-’%40)
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B Granular CI estimates

Table 4: DR=10%, all features

CI type accur L accur U prec L prec U recall L recall U f1 L {1 U accur W prec W recall W 1l W
0 normal 0.8566 0.8839 0.9547  0.9711 0.8859 0.9111 0.9219 0.9372 0.0274  0.0163 0.0252 0.0154
1 AC 0.8559 0.8833  0.9538  0.9703 0.8852 0.9104 0.9215 0.9369 0.0274  0.0165 0.0253  0.0154
2 beta 0.8560 0.8836  0.9539  0.9706 0.8852 0.9107 0.9215 0.9370 0.0276  0.0166 0.0255 0.0155
3 wilson 0.8559 0.8833  0.9538  0.9702 0.8852 0.9104 0.9215 0.9369 0.0274  0.0164 0.0252  0.0154
4 JEF 0.8561 0.8835 0.9541  0.9704 0.8854 0.9106 0.9216 0.9370 0.0274  0.0163 0.0252 0.0154

Table 5: DR=10%, extra 5 features

CI type accur_ L accur U prec L prec U recall L recall U 1 L fl U accur W prec W recall W 1l W
0 normal 0.8563 0.8837 0.9544  0.9708 0.8858 0.9111 0.9217 0.9371 0.0274  0.0164 0.0252 0.0154
1 AC 0.8557 0.8831  0.9535  0.9700 0.8851 0.9104 0.9213 0.9367 0.0274  0.0166 0.0253 0.0154
2 beta 0.8557 0.8834 0.9536  0.9703 0.8852 0.9107 0.9214 0.9369 0.0276  0.0167 0.0255 0.0155
3 wilson 0.8557 0.8831  0.9535  0.9700 0.8851 0.9104 0.9213 0.9367 0.0274  0.0165 0.0252 0.0154
4 JEF 0.8559 0.8833  0.9538  0.9702 0.8854 0.9106 0.9215 0.9368 0.0274  0.0164 0.0252 0.0154

Table 6: DR=10%, less than 5 features

Cltype accur_L accur_U prec_L prec_U recall L recall U fl_L f1_U accur_ W prec. W recall W f1_W
0 normal 0.8681 0.8944  0.9802  0.9906 0.8796 0.9051 0.9293 0.9438 0.0264  0.0104 0.0255 0.0145
1 AC 0.8674 0.8938  0.9791  0.9898 0.8789 0.9044 0.9289 0.9434 0.0264  0.0107 0.0255 0.0146
2 beta 0.8675 0.8941  0.9794  0.9901 0.8790 0.9047 0.9289 0.9436 0.0266  0.0107 0.0257 0.0147
3 wilson 0.8674 0.8938  0.9792  0.9897 0.8789 0.9044 0.9289 0.9434 0.0264  0.0105 0.0255 0.0145
4 JEF 0.8676 0.8940  0.9795  0.9899 0.8791 0.9046  0.9290 0.9435 0.0263  0.0104 0.0255 0.0145

Table 7: DR=10%, less than 5 features and 5 extra

CI type accur L. accur U prec L. prec U recall L recall U f1 L fl U accur W prec W recall W 1l W
0 normal 0.8681 0.8944  0.9802  0.9906 0.8796 0.9051 0.9293 0.9438 0.0264  0.0104 0.0255 0.0145
1 AC 0.8674 0.8938  0.9791  0.9898 0.8789 0.9044 0.9289 0.9434 0.0264  0.0107 0.0255 0.0146
2 beta 0.8675 0.8941  0.9794  0.9901 0.8790 0.9047 0.9289 0.9436 0.0266  0.0107 0.0257 0.0147
3 wilson 0.8674 0.8938  0.9792  0.9897 0.8789 0.9044 0.9289 0.9434 0.0264  0.0105 0.0255 0.0145
4 JEF 0.8676 0.8940  0.9795  0.9899 0.8791 0.9046  0.9290 0.9435 0.0263  0.0104 0.0255 0.0145

Table 8: Oversample DR=10% to DR=50%), all features

CI type accur_L accur_U prec_L prec_U recall L recall U fl_ L fl_U accur_ W prec_ W recall W f1_W
0 normal 0.8443 0.8727  0.9055  0.9292 0.9115 0.9346 0.9119 0.9285 0.0284  0.0238 0.0231 0.0166
1 AC 0.8437 0.8721  0.9046  0.9285 0.9107 0.9339 0.9115 0.9281 0.0284  0.0239 0.0232  0.0166
2 beta 0.8438 0.8724  0.9047  0.9288 0.9108 0.9342 0.9115 0.9283 0.0286  0.0241 0.0234 0.0167
3 wilson 0.8437 0.8721  0.9047  0.9285 0.9107 0.9338 0.9115 0.9281 0.0284  0.0238 0.0231 0.0166
4 JEF 0.8439 0.8723  0.9049  0.9287 0.9109 0.9340 0.9116 0.9282 0.0284  0.0238 0.0231 0.0166

Table 9: Oversample DR=10% to DR=50%, extra 5 features

CI type accur_L accur_U prec_L prec_U recall L recall U fl L fl_U accur_ W prec. W recall W f1_W
0 normal 0.8474 0.8756  0.9106  0.9337 0.9106 0.9337 0.9139 0.9303 0.0281 0.0231 0.0231 0.0164
1 AC 0.8468 0.8750  0.9097  0.9330 0.9097 0.9330 0.9135 0.9299 0.0282  0.0232 0.0232  0.0164
2 beta 0.8469 0.8753  0.9098  0.9333 0.9098 0.9333 0.9136 0.9301 0.0284  0.0234 0.0234  0.0165
3 wilson 0.8468 0.8750  0.9097  0.9329 0.9097 0.9329 0.9135 0.9299 0.0281 0.0232 0.0232  0.0164
4 JEF 0.8470 0.8751  0.9100  0.9331 0.9100 0.9331 0.9137 0.9300 0.0281 0.0232 0.0232  0.0164
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Table 10: Oversample DR=10% to DR=50%, less then 5 features

Cltype accur L accur U prec L prec U recall L recall U 1 L fl U accur W prec W recall W 1 W
0 normal 0.7423 0.7772  0.8009  0.8342 0.8897 0.9165 0.8473 0.8691 0.0348 0.0334 0.0269 0.0218
1 AC 0.7419 0.7767  0.8003  0.8336 0.8888 0.9157 0.8469 0.8688 0.0348 0.0334 0.0269 0.0218
2 beta 0.7419 0.7770  0.8003  0.8339 0.8889 0.9161 0.8470 0.8689 0.0350  0.0336 0.0272  0.0220
3 wilson 0.7419 0.7767  0.8003  0.8336 0.8888 0.9157 0.8469 0.8688 0.0348  0.0334 0.0269 0.0218
4 JEF 0.7420 0.7768  0.8004  0.8338 0.8891 0.9159 0.8470 0.8689 0.0348 0.0333 0.0269 0.0218

Table 11: Oversample DR=10% to DR=50%, less than 5 features and 5 extra

CI type accur_L accur_U prec_L prec_U recall L recall U fl L f1_U accur_ W prec_ W recall W f1_W
0 normal 0.7418 0.7767  0.8006  0.8340 0.8893 0.9162 0.8470 0.8688 0.0348 0.0334 0.0269 0.0218
1 AC 0.7414 0.7762  0.8000  0.8334 0.8885 0.9155 0.8466 0.8685 0.0348  0.0334 0.0270 0.0219
2 beta 0.7414 0.7765  0.8000  0.8337 0.8886 0.9158 0.8467 0.8686 0.0351  0.0337 0.0272  0.0220
3 wilson 0.7414 0.7762  0.8000  0.8334 0.8885 0.9154 0.8466 0.8685 0.0348 0.0334 0.0269 0.0219
4 JEF 0.7415 0.7763  0.8002  0.8335 0.8888 0.9156  0.8467 0.8686 0.0348 0.0334 0.0269 0.0218

Table 12: DR=3%, all features

CI type accur L accur U prec L prec U recall L recall U fl L fl U accur W prec W recall W 1l W
0 normal 0.9175 0.9385  0.9479  0.9648 0.9616 0.9761 0.9570 0.9681 0.0211  0.0169 0.0145 0.0112
1 AC 0.9167 0.9379  0.9470  0.9641 0.9607 0.9754 0.9566 0.9678 0.0211 0.0170 0.0146 0.0112
2 beta 0.9168 0.9381  0.9472  0.9644 0.9609 0.9756 0.9566 0.9679 0.0213 0.0172 0.0148 0.0113
3 wilson 0.9167 0.9378  0.9471  0.9640 0.9608 0.9753  0.9566 0.9677 0.0211  0.0170 0.0146 0.0112
4 JEF 0.9170 0.9380  0.9473  0.9642 0.9610 0.9755 0.9567 0.9679 0.0211  0.0169 0.0145 0.0112

Table 13: DR=3%, extra 5 features

CItype accur L accur_ U prec_ L prec_ U recall L recall U 1 L fl U accur W prec. W recall W 1 W
0 normal 0.9175 0.9385  0.9479  0.9648 0.9616 0.9761 0.9570 0.9681 0.0211 0.0169 0.0145 0.0112
1 AC 0.9167 0.9379  0.9470  0.9641 0.9607 0.9754 0.9566 0.9678 0.0211 0.0170 0.0146 0.0112
2 beta 0.9168 0.9381  0.9472  0.9644 0.9609 0.9756  0.9566 0.9679 0.0213  0.0172 0.0148 0.0113
3 wilson 0.9167 0.9378  0.9471  0.9640 0.9608 0.9753 0.9566 0.9677 0.0211  0.0170 0.0146 0.0112
4 JEF 0.9170 0.9380  0.9473  0.9642 0.9610 0.9755 0.9567 0.9679 0.0211 0.0169 0.0145 0.0112

Table 14: DR=3%, less than 5 features

CI type accur_L accur_U prec_L prec_U recall L recall U fl_ L fl_U accur_ W prec_ W recall W f1_W
0 normal 0.8820 0.9070  0.9101  0.9324 0.9608 0.9757 0.9373  0.9509 0.0250  0.0223 0.0149 0.0136
1 AC 0.8813 0.9064 0.9093  0.9317 0.9599 0.9749 0.9369 0.9506 0.0251  0.0224 0.0151 0.0137
2 beta 0.8814 0.9067  0.9094  0.9320 0.9600 0.9752  0.9370 0.9507 0.0253 0.0226 0.0152 0.0137
3 wilson 0.8813 0.9064  0.9093  0.9317 0.9599 0.9749 0.9369 0.9506 0.0250 0.0223 0.0150 0.0136
4 JEF 0.8815 0.9065  0.9095  0.9318 0.9602 0.9751 0.9370 0.9507 0.0250  0.0223 0.0149 0.0136

Table 15: DR=3%, less than 5 features and 5 extra

CI type accur_L accur U prec_ L prec U recall L recall U f1 L {1 U accur W prec. W recall W 1 W
0 normal 0.8820 0.9070  0.9101  0.9324 0.9608 0.9757 0.9373  0.9509 0.0250  0.0223 0.0149 0.0136
1 AC 0.8813 0.9064 0.9093  0.9317 0.9599 0.9749 0.9369 0.9506 0.0251 0.0224 0.0151 0.0137
2 beta 0.8814 0.9067  0.9094  0.9320 0.9600 0.9752 0.9370 0.9507 0.0253 0.0226 0.0152 0.0137
3 wilson 0.8813 0.9064  0.9093  0.9317 0.9599 0.9749 0.9369 0.9506 0.0250  0.0223 0.0150 0.0136
4 JEF 0.8815 0.9065 0.9095  0.9318 0.9602 0.9751 0.9370 0.9507 0.0250  0.0223 0.0149 0.0136

Table 16: Oversample DR=3% to DR=50%, all features

CI type accur_L accur_U prec_L prec_U recall L recall U fl L f1_U accur_ W prec. W recall W f1_W
0 normal 0.9010 0.9240  0.9236  0.9442 0.9680 0.9813 0.9476 0.9600 0.0230 0.0206 0.0133 0.0124
1 AC 0.9003 0.9234  0.9228  0.9435 0.9671 0.9806 0.9472 0.9597 0.0231  0.0207 0.0135 0.0125
2 beta 0.9004 0.9236  0.9229  0.9437 0.9672 0.9808 0.9473 0.9598 0.0233  0.0208 0.0136 0.0126
3 wilson 0.9003 0.9233  0.9228  0.9434 0.9671 0.9805 0.9472 0.9596 0.0230 0.0206 0.0134 0.0124
4 JEF 0.9005 0.9235 0.9230  0.9436 0.9674 0.9807 0.9473 0.9598 0.0230 0.0206 0.0133 0.0124
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Table 17: Oversample DR=3% to DR=10%, all features

Cltype accur L accur U prec L prec U recall L recall U 1 L fl U accur W prec W recall W 1 W

0 normal 0.9103 0.9322  0.9383  0.9568 0.9633 0.9775  0.9530 0.9647 0.0219 0.0185 0.0142 0.0117

1 AC 0.9095 0.9316  0.9375  0.9561 0.9624 0.9767 0.9526 0.9643 0.0220 0.0186 0.0144 0.0118

2 beta 0.9096 0.9318 0.9376  0.9564 0.9625 0.9770 0.9526 0.9645 0.0222  0.0187 0.0145 0.0118

3 wilson 0.9096 0.9315  0.9375  0.9560 0.9624 0.9767 0.9526 0.9643 0.0220  0.0185 0.0143 0.0117

4 JEF 0.9098 0.9317  0.9378  0.9562 0.9627 0.9769 0.9527 0.9644 0.0219 0.0185 0.0142 0.0117

Table 18: Oversample DR=3% to DR=5%, all features

CI type accur_L accur_U prec_L prec_U recall L recall U fl L f1_U accur_ W prec_ W recall W f1_W

0 normal 0.9140 0.9355  0.9423  0.9601 0.9634 0.9776  0.9550 0.9664 0.0215 0.0178 0.0142 0.0114

1 AC 0.9133 0.9348  0.9414  0.9594 0.9625 0.9768 0.9546 0.9661 0.0216  0.0180 0.0143 0.0115

2 beta 0.9134 0.9351  0.9416  0.9597 0.9627 0.9771 0.9547 0.9662 0.0217  0.0181 0.0144 0.0116

3 wilson 0.9133 0.9348  0.9415  0.9594 0.9625 0.9768 0.9546 0.9661 0.0215 0.0179 0.0142 0.0115

4 JEF 0.9135 0.9350  0.9417  0.9595 0.9628 0.9770 0.9547 0.9662 0.0215 0.0179 0.0142 0.0114
Table 19: Oversample DR=3% to DR=50%, and 5 extra features

Cltype accur_L accur_U prec_L prec_U recall L recall U fl_L f1_U accur_ W prec. W recall W fl1_W

0 normal 0.9007 0.9238 0.9236  0.9442 0.9677 0.9811 0.9475 0.9599 0.0230  0.0206 0.0134 0.0124

1 AC 0.9000 0.9231  0.9228  0.9435 0.9668 0.9803 0.9471 0.9595 0.0231 0.0207 0.0136 0.0125

2 beta 0.9001 0.9234  0.9229  0.9437 0.9669 0.9806 0.9471 0.9597 0.0233 0.0208 0.0137 0.0126

3 wilson 0.9000 0.9231  0.9228  0.9434 0.9668 0.9803 0.9471 0.9595 0.0231  0.0206 0.0135 0.0125

4 JEF 0.9002 0.9233  0.9230  0.9436 0.9671 0.9805 0.9472  0.9596 0.0230  0.0206 0.0134 0.0124
Table 20: Oversample DR=3% to DR=10%, and 5 extra features

CItype accur L accur_ U prec_ L prec_ U recall L recall U 1 L fl U accur W prec. W recall W 1 W

0 normal 0.9103 0.9322  0.9383  0.9568 0.9633 0.9775  0.9530 0.9647 0.0219 0.0185 0.0142 0.0117

1 AC 0.9095 0.9316  0.9375  0.9561 0.9624 0.9767 0.9526 0.9643 0.0220 0.0186 0.0144 0.0118

2 beta 0.9096 0.9318 0.9376  0.9564 0.9625 0.9770 0.9526 0.9645 0.0222  0.0187 0.0145 0.0118

3 wilson 0.9096 0.9315  0.9375  0.9560 0.9624 0.9767 0.9526 0.9643 0.0220  0.0185 0.0143 0.0117

4 JEF 0.9098 0.9317  0.9378  0.9562 0.9627 0.9769 0.9527 0.9644 0.0219 0.0185 0.0142 0.0117
Table 21: Oversample DR=3% to DR=5%, and 5 extra features

CI type accur_L accur_U prec_L prec_U recall L recall U fl_ L fl_U accur_ W prec_ W recall W f1_W

0 normal 0.9140 0.9355  0.9423  0.9601 0.9634 0.9776  0.9550 0.9664 0.0215  0.0178 0.0142 0.0114

1 AC 0.9133 0.9348  0.9414  0.9594 0.9625 0.9768 0.9546 0.9661 0.0216  0.0180 0.0143 0.0115

2 beta 0.9134 0.9351  0.9416  0.9597 0.9627 0.9771  0.9547 0.9662 0.0217 0.0181 0.0144 0.0116

3 wilson 0.9133 0.9348  0.9415  0.9594 0.9625 0.9768 0.9546 0.9661 0.0215 0.0179 0.0142 0.0115

4 JEF 0.9135 0.9350  0.9417  0.9595 0.9628 0.9770  0.9547 0.9662 0.0215  0.0179 0.0142 0.0114
Table 22: Oversample DR=3% to DR=50%, less than 5 featuress

CI type accur_L accur U prec_ L prec U recall L recall U f1 L {1 U accur W prec. W recall W 1 W

0 normal 0.8946 0.9184  0.9225  0.9432 0.9621 0.9767 0.9444 0.9572 0.0237  0.0207 0.0145 0.0128

1 AC 0.8939 0.9177  0.9217  0.9425 0.9612 0.9759 0.9440 0.9568 0.0238 0.0208 0.0147 0.0128

2 beta 0.8940 0.9180  0.9218  0.9428 0.9614 0.9762 0.9440 0.9569 0.0240 0.0210 0.0148 0.0129

3 wilson 0.8940 0.9177  0.9217  0.9425 0.9613 0.9759 0.9440 0.9568 0.0237  0.0208 0.0146 0.0128

4 JEF 0.8942 09179 09219  0.9427 0.9615 0.9761 0.9441 0.9569 0.0237  0.0207 0.0146 0.0128
Table 23: Oversample DR=3% to DR=10%, less than 5 features

CI type accur_L accur_U prec_L prec_U recall L recall U fl L f1_U accur_ W prec. W recall W f1_W

0 normal 0.8728 0.8987  0.8980  0.9217 0.9630 0.9775 0.9320 0.9462 0.0259 0.0237 0.0145 0.0142

1 AC 0.8721 0.8981  0.8973  0.9210 0.9620 0.9767 0.9316 0.9458 0.0260  0.0238 0.0147 0.0143

2 beta 0.8722 0.8984  0.8973  0.9213 0.9622 0.9770 0.9316 0.9460 0.0262  0.0240 0.0148 0.0144

3 wilson 0.8722 0.8981 0.8973  0.9210 0.9621 0.9767 0.9316 0.9458 0.0259 0.0237 0.0146 0.0142

4 JEF 0.8723 0.8982  0.8975  0.9212 0.9624 0.9769 0.9317 0.9459 0.0259 0.0237 0.0145 0.0142
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Table 24: Oversample DR=3% to DR=5%, less than 5 features

Cltype accur L accur U prec L prec U recall L recall U 1 L fl U accur W prec W recall W 1 W

0 normal 0.8801 0.9054  0.9062  0.9290 0.9627 0.9772  0.9362 0.9499 0.0252 0.0228 0.0145 0.0138
1 AC 0.8795 0.9047  0.9055  0.9283 0.9618 0.9765 0.9358 0.9496 0.0253 0.0228 0.0147 0.0138
2 beta 0.8796 0.9050  0.9056  0.9286 0.9619 0.9767 0.9358 0.9497 0.0255  0.0230 0.0148 0.0139
3 wilson 0.8795 0.9047  0.9055  0.9283 0.9618 0.9764 0.9358 0.9495 0.0252  0.0228 0.0146 0.0138
4 JEF 0.8797 0.9049  0.9057  0.9285 0.9621 0.9766  0.9359 0.9497 0.0252 0.0228 0.0146 0.0138

Table 25: Oversample DR=3% to DR=50%, less than 5 featuress and 5 extra

CI type accur_L accur_U prec_L prec_U recall L recall U fl L f1_U accur_ W prec_ W recall W f1_W

0 normal 0.9204 0.9411  0.9504  0.9669 0.9623 0.9766 0.9586 0.9695 0.0207 0.0165 0.0143 0.0109
1 AC 0.9197 0.9404 0.9496  0.9662 0.9614 0.9759 0.9581 0.9691 0.0208  0.0166 0.0145 0.0110
2 beta 0.9198 0.9407  0.9497  0.9665 0.9615 0.9761 0.9582 0.9693 0.0209  0.0168 0.0146 0.0111
3 wilson 0.9197 0.9404  0.9496  0.9662 0.9614 0.9758 0.9581 0.9691 0.0207 0.0165 0.0144 0.0110
4 JEF 0.9199 0.9406  0.9499  0.9664 0.9617 0.9760 0.9583 0.9692 0.0207 0.0165 0.0144 0.0109
Table 26: Oversample DR=3% to DR=10%), less than 5 features and 5 extra

CI type accur L accur U prec L prec U recall L recall U fl L fl U accur W prec W recall W 1l W

0 normal 0.8725 0.8985  0.8977  0.9215 0.9630 0.9775 0.9318 0.9461 0.0259  0.0237 0.0145 0.0142
1 AC 0.8719 0.8979  0.8970  0.9208 0.9620 0.9767 0.9314 0.9457 0.0260 0.0238 0.0147 0.0143
2 beta 0.8719 0.8981  0.8971  0.9211 0.9622 0.9770 0.9315 0.9458 0.0262 0.0240 0.0148 0.0144
3 wilson 0.8719 0.8978  0.8970  0.9208 0.9621 0.9767 0.9314 0.9457 0.0259  0.0238 0.0146 0.0143
4 JEF 0.8721 0.8980  0.8972  0.9210 0.9623 0.9769 0.9315 0.9458 0.0259  0.0237 0.0146 0.0142
Table 27: Oversample DR=3% to DR=5%, less than 5 features and 5 extra

CItype accur L accur_ U prec_ L prec_ U recall L recall U 1 L fl U accur W prec. W recall W 1 W

0 normal 0.8804 0.9056  0.9065  0.9292 0.9627 0.9772  0.9363 0.9501 0.0252 0.0227 0.0145 0.0137
1 AC 0.8797 0.9050  0.9057  0.9285 0.9618 0.9765 0.9359 0.9497 0.0252 0.0228 0.0147 0.0138
2 beta 0.8798 0.9052  0.9058  0.9288 0.9619 0.9768 0.9360 0.9498 0.0254  0.0230 0.0148 0.0139
3 wilson 0.8798 0.9049  0.9058  0.9285 0.9618 0.9764 0.9359 0.9497 0.0252  0.0228 0.0146 0.0138
4 JEF 0.8799 0.9051  0.9060  0.9287 0.9621 0.9766  0.9360 0.9498 0.0252 0.0227 0.0145 0.0137

Table 28: DR=0.1%, all features

CI type accur_L accur_U prec_L prec_U recall L recall U fl_ L fl_U accur_ W prec_ W recall W f1_W

0 normal 0.9934 0.9986  0.9973  1.0000 0.9951 0.9994 0.9967 0.9993 0.0051  0.0027 0.0043 0.0026
1 AC 0.9924 0.9980  0.9961  0.9998 0.9940 0.9989 0.9962 0.9990 0.0056  0.0037 0.0049 0.0028
2 beta 0.9926 0.9981  0.9965  0.9997 0.9943 0.9989 0.9963 0.9991 0.0055 0.0033 0.0046 0.0027
3 wilson 0.9925 0.9979  0.9963  0.9996 0.9941 0.9987 0.9962 0.9989 0.0054 0.0033 0.0046  0.0027
4 JEF 0.9928 0.9980  0.9966  0.9997 0.9945 0.9988 0.9964 0.9990 0.0052  0.0030 0.0044  0.0026

Table 29: DR=0.1%, extra 5 features

CI type accur_L accur U prec_ L prec U recall L recall U f1 L {1 U accur W prec. W recall W 1 W

0 normal 0.9934 0.9986  0.9973  1.0000 0.9951 0.9994 0.9967 0.9993 0.0051  0.0027 0.0043  0.0026
1 AC 0.9924 0.9980  0.9961  0.9998 0.9940 0.9989 0.9962 0.9990 0.0056 0.0037 0.0049 0.0028
2 beta 0.9926 0.9981  0.9965  0.9997 0.9943 0.9989 0.9963 0.9991 0.0055 0.0033 0.0046  0.0027
3 wilson 0.9925 0.9979  0.9963  0.9996 0.9941 0.9987 0.9962 0.9989 0.0054  0.0033 0.0046  0.0027
4 JEF 0.9928 0.9980  0.9966  0.9997 0.9945 0.9988 0.9964 0.9990 0.0052  0.0030 0.0044  0.0026

Table 30: DR=0.1%, less than 5 features

CI type accur_L accur_U prec_L prec_U recall L recall U fl L f1_U accur_ W prec. W recall W f1_W

0 normal 0.9853 0.9937  0.9886  0.9958 0.9951 0.9994 0.9926 0.9968 0.0083 0.0072 0.0043 0.0042
1 AC 0.9844 0.9930  0.9877  0.9952 0.9940 0.9988 0.9921 0.9965 0.0086  0.0075 0.0049 0.0043
2 beta 0.9846 0.9932  0.9879  0.9953 0.9943 0.9989 0.9922 0.9966 0.0086  0.0075 0.0046  0.0043
3 wilson 0.9845 0.9929  0.9877  0.9951 0.9941 0.9987 0.9922 0.9964 0.0085 0.0073 0.0046  0.0043
4 JEF 0.9847 0.9931  0.9880  0.9953 0.9944 0.9988 0.9923 0.9965 0.0083 0.0072 0.0044 0.0042
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Table 31: DR=0.1%, less than 5 features and 5 extra

Cltype accur L accur U prec L prec U recall L recall U 1 L fl U accur W prec W recall W 1 W

0 normal 0.9853 0.9937  0.9886  0.9958 0.9951 0.9994 0.9926 0.9968 0.0083 0.0072 0.0043 0.0042

1 AC 0.9844 0.9930  0.9877  0.9952 0.9940 0.9988 0.9921 0.9965 0.0086 0.0075 0.0049 0.0043

2 beta 0.9846 0.9932  0.9879  0.9953 0.9943 0.9989 0.9922 0.9966 0.0086  0.0075 0.0046  0.0043

3 wilson 0.9845 0.9929  0.9877  0.9951 0.9941 0.9987 0.9922 0.9964 0.0085  0.0073 0.0046  0.0043

4 JEF 0.9847 0.9931  0.9880  0.9953 0.9944 0.9988 0.9923 0.9965 0.0083 0.0072 0.0044 0.0042
Table 32: Oversample DR = 0.1% to DR=10%, all features

CI type accur_L accur_U prec_L prec_U recall L recall U fl L f1_U accur_ W prec_ W recall W f1_W

0 normal 0.9934 0.9986  0.9973  1.0000 0.9951 0.9994 0.9967 0.9993 0.0051 0.0027 0.0043 0.0026

1 AC 0.9924 0.9980  0.9961  0.9998 0.9940 0.9989 0.9962 0.9990 0.0056  0.0037 0.0049  0.0028

2 beta 0.9926 0.9981  0.9965  0.9997 0.9943 0.9989 0.9963 0.9991 0.0055  0.0033 0.0046  0.0027

3 wilson 0.9925 0.9979  0.9963  0.9996 0.9941 0.9987 0.9962 0.9989 0.0054 0.0033 0.0046 0.0027

4 JEF 0.9928 0.9980  0.9966  0.9997 0.9945 0.9988 0.9964 0.9990 0.0052 0.0030 0.0044 0.0026
Table 33: Oversample DR = 0.1% to DR=5%, all features

CI type accur L accur U prec L prec U recall L recall U fl L fl U accur W prec W recall W 1l W

0 normal 0.9938 0.9987  0.9977  1.0000 0.9951 0.9994 0.9969 0.9994 0.0050  0.0023 0.0043  0.0025

1 AC 0.9927 0.9982  0.9964  0.9999 0.9940 0.9989 0.9963 0.9991 0.0055 0.0035 0.0049 0.0028

2 beta 0.9930 0.9983  0.9968  0.9998 0.9943 0.9989 0.9965 0.9991 0.0053 0.0030 0.0046 0.0027

3 wilson 0.9928 0.9980  0.9966  0.9997 0.9941 0.9987 0.9964 0.9990 0.0052  0.0031 0.0046  0.0026

4 JEF 0.9931 0.9982  0.9970  0.9998 0.9945 0.9988 0.9966 0.9991 0.0051 0.0027 0.0044  0.0025
Table 34: Oversample DR = 0.1% to DR=3%), all features

CItype accur L accur_ U prec_ L prec_ U recall L recall U 1 L fl U accur W prec. W recall W 1 W

0 normal 0.9934 0.9986  0.9973  1.0000 0.9951 0.9994 0.9967 0.9993 0.0051 0.0027 0.0043 0.0026

1 AC 0.9924 0.9980  0.9961 0.9998 0.9940 0.9989 0.9962 0.9990 0.0056 0.0037 0.0049 0.0028

2 beta 0.9926 0.9981  0.9965  0.9997 0.9943 0.9989 0.9963 0.9991 0.0055  0.0033 0.0046  0.0027

3 wilson 0.9925 0.9979  0.9963  0.9996 0.9941 0.9987 0.9962 0.9989 0.0054  0.0033 0.0046 0.0027

4 JEF 0.9928 0.9980  0.9966  0.9997 0.9945 0.9988 0.9964 0.9990 0.0052 0.0030 0.0044 0.0026
Table 35: Oversample DR = 0.1% to DR=1%, all features

CI type accur_L accur_U prec_L prec_U recall L recall U fl_ L fl_U accur_ W prec_ W recall W f1_W

0 normal 0.9934 0.9986  0.9973  1.0000 0.9951 0.9994 0.9967 0.9993 0.0051 0.0027 0.0043  0.0026

1 AC 0.9924 0.9980  0.9961  0.9998 0.9940 0.9989 0.9962 0.9990 0.0056  0.0037 0.0049  0.0028

2 Dbeta 0.9926 0.9981  0.9965  0.9997 0.9943 0.9989 0.9963 0.9991 0.0055 0.0033 0.0046 0.0027

3 wilson 0.9925 0.9979  0.9963  0.9996 0.9941 0.9987 0.9962 0.9989 0.0054 0.0033 0.0046 0.0027

4 JEF 0.9928 0.9980  0.9966  0.9997 0.9945 0.9988 0.9964 0.9990 0.0052  0.0030 0.0044  0.0026
Table 36: Oversample DR = 0.1% to DR=0.5%, all features

CI type accur_L accur U prec_ L prec U recall L recall U f1 L {1 U accur W prec. W recall W 1 W

0 normal 0.9934 0.9986  0.9973  1.0000 0.9951 0.9994 0.9967 0.9993 0.0051 0.0027 0.0043  0.0026

1 AC 0.9924 0.9980 0.9961  0.9998 0.9940 0.9989 0.9962 0.9990 0.0056 0.0037 0.0049 0.0028

2 Dbeta 0.9926 0.9981  0.9965  0.9997 0.9943 0.9989 0.9963 0.9991 0.0055 0.0033 0.0046 0.0027

3 wilson 0.9925 0.9979  0.9963  0.9996 0.9941 0.9987 0.9962 0.9989 0.0054  0.0033 0.0046  0.0027

4 JEF 0.9928 0.9980  0.9966  0.9997 0.9945 0.9988 0.9964 0.9990 0.0052  0.0030 0.0044  0.0026

Table 37: Oversample DR=0.1% to DR=50%), all features

CI type accur_L accur_U prec_L prec_U recall L recall U fl L f1_U accur_ W prec. W recall W f1_W

0 normal 0.8915 0.9155  0.8936  0.9174 0.9954 0.9996 0.9428 0.9558 0.0241 0.0239 0.0043 0.0130

1 AC 0.8908 0.9149  0.8929  0.9168 0.9941 0.9991 0.9424 0.9554 0.0241 0.0239 0.0050 0.0130

2 beta 0.8909 0.9152  0.8929  0.9171 0.9945 0.9991 0.9424 0.9555 0.0243  0.0241 0.0046 0.0131

3 wilson 0.8908 0.9149 0.8929  0.9168 0.9943 0.9989 0.9424 0.9554 0.0241 0.0239 0.0046 0.0130

4 JEF 0.8910 0.9150  0.8931 0.9169 0.9947 0.9991 0.9425 0.9555 0.0241 0.0239 0.0044 0.0130
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Table 38: Oversample DR=0.1% to DR=50%, and 5 extra features

CI type accur L accur U prec L prec U recall L recall U

fl. L f1 U accur W prec W recall W {1 W

0 normal 0.8762 0.9018  0.8782  0.9037 0.9953 0.9996 0.9342 0.9482 0.0256 0.0254 0.0043 0.0139

1 AC 0.8755 0.9012  0.8776  0.9030 0.9940 0.9991 0.9338 0.9478 0.0256 0.0255 0.0051 0.0140

2 beta 0.8756 0.9014 0.8776  0.9033 0.9944 0.9991 0.9339 0.9480 0.0258  0.0257 0.0047 0.0141

3 wilson 0.8756 0.9012  0.8776  0.9030 0.9942 0.9989 0.9338 0.9478 0.0256  0.0254 0.0047  0.0140

4 JEF 0.8757 0.9013  0.8778  0.9032 0.9946 0.9990 0.9340 0.9479 0.0256 0.0254 0.0044 0.0139

Table 39: Oversample DR=0.1% to DR=50%, less than 5 features

CI type accur_L accur_U prec_L prec_U recall L recall U fl L f1_U accur_ W prec_ W recall W f1_W

0 normal 0.9862 0.9943  0.9893  0.9962 0.9954 0.9995 0.9931 0.9971 0.0080 0.0069 0.0041  0.0040

1 AC 0.9853 0.9936  0.9883  0.9956 0.9943 0.9990 0.9926 0.9968 0.0083  0.0073 0.0047  0.0042

2 beta 0.9855 0.9938  0.9885  0.9957 0.9946 0.9991 0.9927 0.9969 0.0083  0.0072 0.0044  0.0042

3 wilson 0.9854 0.9935 0.9884  0.9955 0.9944 0.9989 0.9926 0.9967 0.0082 0.0071 0.0044 0.0041

4 JEF 0.9856 0.9937  0.9887  0.9956 0.9948 0.9990 0.9928 0.9968 0.0080 0.0070 0.0042 0.0041

Table 40: Oversample DR=0.1% to DR=50%, less than 5 features and 5 extra

CI type accur L accur U prec L prec U recall L recall U fl L fl U accur W prec W recall W 1l W

0 normal 0.8607 0.8878  0.8630  0.8898 0.9948 0.9995 0.9254 0.9403 0.0270  0.0268 0.0046 0.0149

1 AC 0.8601 0.8872  0.8623  0.8892 0.9935 0.9989 0.9250 0.9400 0.0270 0.0269 0.0053 0.0149

2 beta 0.8602 0.8874  0.8624  0.8895 0.9939 0.9989 0.9251 0.9401 0.0273 0.0271 0.0050 0.0150

3 wilson 0.8601 0.8871  0.8624  0.8892 0.9937 0.9987 0.9251 0.9400 0.0270  0.0269 0.0050 0.0149

4 JEF 0.8603 0.8873  0.8625  0.8894 0.9941 0.9989 0.9252 0.9401 0.0270  0.0268 0.0047 0.0149
Table 41: Oversample DR = 0.1% to DR=10%, and 5 extra features

CI type accur_L accur_U prec_L prec_U recall L recall U fl L f1_U accur_ W prec. W recall W f1_W

0 normal 0.9934 0.9986  0.9973  1.0000 0.9951 0.9994 0.9967 0.9993 0.0051 0.0027 0.0043 0.0026

1 AC 0.9924 0.9980 0.9961  0.9998 0.9940 0.9989 0.9962 0.9990 0.0056 0.0037 0.0049 0.0028

2 beta 0.9926 0.9981  0.9965  0.9997 0.9943 0.9989 0.9963 0.9991 0.0055  0.0033 0.0046  0.0027

3 wilson 0.9925 0.9979  0.9963  0.9996 0.9941 0.9987 0.9962 0.9989 0.0054  0.0033 0.0046 0.0027

4 JEF 0.9928 0.9980  0.9966  0.9997 0.9945 0.9988 0.9964 0.9990 0.0052 0.0030 0.0044 0.0026
Table 42: Oversample DR = 0.1% to DR=5%, and 5 extra features

CI type accur_L accur_U prec_L prec_U recall L recall U fl_ L fl_U accur_ W prec_ W recall W f1_W

0 normal 0.9938 0.9987  0.9977  1.0000 0.9951 0.9994 0.9969 0.9994 0.0050  0.0023 0.0043  0.0025

1 AC 0.9927 0.9982  0.9964  0.9999 0.9940 0.9989 0.9963 0.9991 0.0055  0.0035 0.0049  0.0028

2 beta 0.9930 0.9983  0.9968  0.9998 0.9943 0.9989 0.9965 0.9991 0.0053 0.0030 0.0046 0.0027

3 wilson 0.9928 0.9980 0.9966  0.9997 0.9941 0.9987 0.9964 0.9990 0.0052 0.0031 0.0046 0.0026

4 JEF 0.9931 0.9982  0.9970  0.9998 0.9945 0.9988 0.9966 0.9991 0.0051 0.0027 0.0044  0.0025
Table 43: Oversample DR = 0.1% to DR=3%, and 5 extra features

CI type accur_L accur U prec_ L prec U recall L recall U f1 L {1 U accur W prec. W recall W 1 W

0 normal 0.9934 0.9986  0.9973  1.0000 0.9951 0.9994 0.9967 0.9993 0.0051 0.0027 0.0043  0.0026

1 AC 0.9924 0.9980  0.9961  0.9998 0.9940 0.9989 0.9962 0.9990 0.0056 0.0037 0.0049 0.0028

2 Dbeta 0.9926 0.9981  0.9965  0.9997 0.9943 0.9989 0.9963 0.9991 0.0055 0.0033 0.0046 0.0027

3 wilson 0.9925 0.9979  0.9963  0.9996 0.9941 0.9987 0.9962 0.9989 0.0054  0.0033 0.0046  0.0027

4 JEF 0.9928 0.9980  0.9966  0.9997 0.9945 0.9988 0.9964 0.9990 0.0052  0.0030 0.0044  0.0026
Table 44: Oversample DR = 0.1% to DR=1%, and 5 extra features

CI type accur_L accur_U prec_L prec_U recall L recall U fl L f1_U accur_ W prec. W recall W f1_W

0 normal 0.9934 0.9986  0.9973  1.0000 0.9951 0.9994 0.9967 0.9993 0.0051 0.0027 0.0043 0.0026

1 AC 0.9924 0.9980  0.9961  0.9998 0.9940 0.9989 0.9962 0.9990 0.0056  0.0037 0.0049  0.0028

2 beta 0.9926 0.9981  0.9965  0.9997 0.9943 0.9989 0.9963 0.9991 0.0055  0.0033 0.0046 0.0027

3 wilson 0.9925 0.9979  0.9963  0.9996 0.9941 0.9987 0.9962 0.9989 0.0054 0.0033 0.0046 0.0027

4 JEF 0.9928 0.9980  0.9966  0.9997 0.9945 0.9988 0.9964 0.9990 0.0052 0.0030 0.0044 0.0026
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Table 45: Oversample DR = 0.1% to DR=0.5%, and 5 extra features

Cltype accur L accur U prec L prec U recall L recall U 1 L fl U accur W prec W recall W 1 W

0 normal 0.9934 0.9986  0.9973  1.0000 0.9951 0.9994 0.9967 0.9993 0.0051 0.0027 0.0043 0.0026

1 AC 0.9924 0.9980  0.9961  0.9998 0.9940 0.9989 0.9962 0.9990 0.0056 0.0037 0.0049 0.0028

2 beta 0.9926 0.9981  0.9965  0.9997 0.9943 0.9989 0.9963 0.9991 0.0055  0.0033 0.0046  0.0027

3 wilson 0.9925 0.9979  0.9963  0.9996 0.9941 0.9987 0.9962 0.9989 0.0054  0.0033 0.0046  0.0027

4 JEF 0.9928 0.9980  0.9966  0.9997 0.9945 0.9988 0.9964 0.9990 0.0052 0.0030 0.0044 0.0026
Table 46: Oversample DR = 0.1% to DR=0.1%, and 5 extra features

CI type accur_L accur_U prec_L prec_U recall L recall U fl L f1_U accur_ W prec_ W recall W f1_W

0 normal 0.9934 0.9986  0.9973  1.0000 0.9951 0.9994 0.9967 0.9993 0.0051 0.0027 0.0043 0.0026

1 AC 0.9924 0.9980  0.9961  0.9998 0.9940 0.9989 0.9962 0.9990 0.0056  0.0037 0.0049  0.0028

2 beta 0.9926 0.9981  0.9965  0.9997 0.9943 0.9989 0.9963 0.9991 0.0055  0.0033 0.0046  0.0027

3 wilson 0.9925 0.9979  0.9963  0.9996 0.9941 0.9987 0.9962 0.9989 0.0054 0.0033 0.0046 0.0027

4 JEF 0.9928 0.9980  0.9966  0.9997 0.9945 0.9988 0.9964 0.9990 0.0052 0.0030 0.0044 0.0026
Table 47: Oversample DR = 0.1% to DR=10%, less than 5 features

CI type accur L accur U prec L prec U recall L recall U fl L fl U accur W prec W recall W 1l W

0 normal 0.9856 0.9939  0.9890  0.9960 0.9951 0.9994 0.9928 0.9969 0.0082  0.0070 0.0043  0.0041

1 AC 0.9847 0.9932  0.9880  0.9954 0.9940 0.9988 0.9923 0.9966 0.0085 0.0074 0.0049 0.0043

2 beta 0.9849 0.9934  0.9882  0.9955 0.9943 0.9989 0.9924 0.9967 0.0085 0.0073 0.0046 0.0043

3 wilson 0.9848 0.9931  0.9880  0.9953 0.9941 0.9987 0.9923 0.9965 0.0084  0.0072 0.0046  0.0042

4 JEF 0.9850 0.9933  0.9883  0.9954 0.9944 0.9988 0.9925 0.9966 0.0082  0.0071 0.0044  0.0042
Table 48: Oversample DR = 0.1% to DR=5%, less than 5 features

CItype accur L accur_ U prec_ L prec_ U recall L recall U 1 L fl U accur W prec. W recall W 1 W

0 normal 0.9862 0.9943  0.9896  0.9964 0.9951 0.9994 0.9931 0.9971 0.0080 0.0068 0.0043 0.0040

1 AC 0.9853 0.9936  0.9886  0.9958 0.9940 0.9988 0.9926 0.9968 0.0083 0.0072 0.0049 0.0042

2 beta 0.9855 0.9938  0.9888  0.9959 0.9943 0.9989 0.9927 0.9969 0.0083  0.0071 0.0046  0.0042

3 wilson 0.9854 0.9935  0.9887  0.9957 0.9941 0.9987 0.9926 0.9967 0.0082  0.0070 0.0046 0.0041

4 JEF 0.9856 0.9937  0.9890  0.9958 0.9944 0.9988 0.9928 0.9968 0.0080 0.0069 0.0044 0.0041
Table 49: Oversample DR = 0.1% to DR=3%, less than 5 featuress

CI type accur_L accur_U prec_L prec_U recall L recall U fl_ L fl_U accur_ W prec_ W recall W f1_W

0 normal 0.9862 0.9943  0.9896  0.9964 0.9951 0.9994 0.9931 0.9971 0.0080  0.0068 0.0043 0.0040

1 AC 0.9853 0.9936  0.9886  0.9958 0.9940 0.9988 0.9926 0.9968 0.0083  0.0072 0.0049  0.0042

2 beta 0.9855 0.9938  0.9888  0.9959 0.9943 0.9989 0.9927 0.9969 0.0083 0.0071 0.0046 0.0042

3 wilson 0.9854 0.9935  0.9887  0.9957 0.9941 0.9987 0.9926 0.9967 0.0082 0.0070 0.0046 0.0041

4 JEF 0.9856 0.9937  0.9890  0.9958 0.9944 0.9988 0.9928 0.9968 0.0080  0.0069 0.0044  0.0041
Table 50: Oversample DR = 0.1% to DR=1%, less than 5 features

CI type accur_L accur U prec_ L prec U recall L recall U f1 L {1 U accur W prec. W recall W 1 W

0 normal 0.9859 0.9941  0.9893  0.9962 0.9951 0.9994 0.9929 0.9970 0.0081  0.0069 0.0043  0.0041

1 AC 0.9850 0.9934 0.9883  0.9956 0.9940 0.9988 0.9924 0.9967 0.0084 0.0073 0.0049 0.0042

2 beta 0.9852 0.9936  0.9885  0.9957 0.9943 0.9989 0.9926 0.9968 0.0084 0.0072 0.0046 0.0042

3 wilson 0.9851 0.9933  0.9884  0.9955 0.9941 0.9987 0.9925 0.9966 0.0083  0.0071 0.0046  0.0042

4 JEF 0.9853 0.9935  0.9887  0.9956 0.9944 0.9988 0.9926 0.9967 0.0081  0.0070 0.0044  0.0041
Table 51: Oversample DR = 0.1% to DR=0.5%, less than 5 features

CI type accur_L accur_U prec_L prec_U recall L recall U fl L f1_U accur_ W prec. W recall W f1_W

0 normal 0.9859 0.9941  0.9893  0.9962 0.9951 0.9994 0.9929 0.9970 0.0081 0.0069 0.0043 0.0041

1 AC 0.9850 0.9934 0.9883  0.9956 0.9940 0.9988 0.9924 0.9967 0.0084  0.0073 0.0049  0.0042

2 beta 0.9852 0.9936  0.9885  0.9957 0.9943 0.9989 0.9926 0.9968 0.0084  0.0072 0.0046  0.0042

3 wilson 0.9851 0.9933  0.9884  0.9955 0.9941 0.9987 0.9925 0.9966 0.0083 0.0071 0.0046  0.0042

4 JEF 0.9853 0.9935 0.9887  0.9956 0.9944 0.9988 0.9926 0.9967 0.0081 0.0070 0.0044 0.0041
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Table 52: Oversample DR = 0.1%

to DR=0.1%, less than 5 features

Cltype accur L accur U prec L prec U recall L recall U 1 L fl U accur W prec W recall W 1 W

0 normal 0.9853 0.9937  0.9886  0.9958 0.9951 0.9994 0.9926 0.9968 0.0083 0.0072 0.0043 0.0042

1 AC 0.9844 0.9930  0.9877  0.9952 0.9940 0.9988 0.9921 0.9965 0.0086 0.0075 0.0049 0.0043

2 beta 0.9846 0.9932  0.9879  0.9953 0.9943 0.9989 0.9922 0.9966 0.0086  0.0075 0.0046  0.0043

3 wilson 0.9845 0.9929  0.9877  0.9951 0.9941 0.9987 0.9922 0.9964 0.0085  0.0073 0.0046  0.0043

4 JEF 0.9847 0.9931  0.9880  0.9953 0.9944 0.9988 0.9923 0.9965 0.0083 0.0072 0.0044 0.0042
Table 53: Oversample DR = 0.1% to DR=10%, less than 5 features and 5 extra

CI type accur_L accur_U prec_L prec_U recall L recall U fl L f1_U accur_ W prec_ W recall W f1_W

0 normal 0.9851 0.9934  0.9883  0.9956 0.9951 0.9994 0.9925 0.9967 0.0084 0.0073 0.0043 0.0042

1 AC 0.9841 0.9928  0.9873  0.9950 0.9940 0.9988 0.9920 0.9964 0.0087  0.0076 0.0049 0.0044

2 beta 0.9843 0.9930  0.9876  0.9952 0.9943 0.9989 0.9921 0.9965 0.0087  0.0076 0.0046  0.0044

3 wilson 0.9842 0.9927  0.9874  0.9949 0.9941 0.9987 0.9920 0.9963 0.0085 0.0075 0.0046 0.0043

4 JEF 0.9844 0.9929  0.9877  0.9951 0.9944 0.9988 0.9922 0.9964 0.0084 0.0073 0.0044 0.0043
Table 54: Oversample DR = 0.1% to DR=5%, less than 5 features and 5 extra

CI type accur L accur U prec L prec U recall L recall U fl L fl U accur W prec W recall W 1l W

0 normal 0.9862 0.9943  0.9896  0.9964 0.9951 0.9994 0.9931 0.9971 0.0080  0.0068 0.0043  0.0040

1 AC 0.9853 0.9936  0.9886  0.9958 0.9940 0.9988 0.9926 0.9968 0.0083 0.0072 0.0049 0.0042

2 beta 0.9855 0.9938  0.9888  0.9959 0.9943 0.9989 0.9927 0.9969 0.0083 0.0071 0.0046 0.0042

3 wilson 0.9854 0.9935 09887  0.9957  0.9941 0.9987 0.9926 0.9967 0.0082  0.0070 0.0046  0.0041

4 JEF 0.9856 0.9937  0.9890  0.9958 0.9944 0.9988 0.9928 0.9968 0.0080  0.0069 0.0044  0.0041
Table 55: Oversample DR = 0.1% to DR=3%, less than 5 featuress and 5 extra

CItype accur L accur_ U prec_ L prec_ U recall L recall U 1 L fl U accur W prec. W recall W 1 W

0 normal 0.9862 0.9943  0.9896  0.9964 0.9951 0.9994 0.9931 0.9971 0.0080 0.0068 0.0043 0.0040

1 AC 0.9853 0.9936  0.9886  0.9958 0.9940 0.9988 0.9926 0.9968 0.0083 0.0072 0.0049 0.0042

2 beta 0.9855 0.9938  0.9888  0.9959 0.9943 0.9989  0.9927  0.9969 0.0083  0.0071 0.0046  0.0042

3 wilson 0.9854 0.9935  0.9887  0.9957  0.9941 0.9987 0.9926 0.9967 0.0082  0.0070 0.0046  0.0041

4 JEF 0.9856 0.9937  0.9890  0.9958 0.9944 0.9988 0.9928 0.9968 0.0080 0.0069 0.0044 0.0041
Table 56: Oversample DR = 0.1% to DR=1%, less than 5 features and 5 extra

CI type accur_L accur_U prec_L prec_U recall L recall U fl_ L fl_U accur_ W prec_ W recall W f1_W

0 normal 0.9859 0.9941  0.9893  0.9962 0.9951 0.9994 0.9929 0.9970 0.0081  0.0069 0.0043 0.0041

1 AC 0.9850 0.9934  0.9883  0.9956 0.9940 0.9988 0.9924 0.9967 0.0084  0.0073 0.0049  0.0042

2 beta 0.9852 0.9936  0.9885  0.9957 0.9943 0.9989 0.9926 0.9968 0.0084 0.0072 0.0046 0.0042

3 wilson 0.9851 0.9933  0.9884  0.9955 0.9941 0.9987 0.9925 0.9966 0.0083 0.0071 0.0046 0.0042

4 JEF 0.9853 0.9935  0.9887  0.9956 0.9944 0.9988 0.9926 0.9967 0.0081  0.0070 0.0044 0.0041
Table 57: Oversample DR = 0.1% to DR=0.5%, less than 5 features and 5 extra

CI type accur_L accur U prec_ L prec U recall L recall U f1 L {1 U accur W prec. W recall W 1 W

0 normal 0.9859 0.9941  0.9893  0.9962 0.9951 0.9994 0.9929 0.9970 0.0081  0.0069 0.0043  0.0041

1 AC 0.9850 0.9934 0.9883  0.9956 0.9940 0.9988 0.9924 0.9967 0.0084 0.0073 0.0049 0.0042

2 beta 0.9852 0.9936  0.9885  0.9957 0.9943 0.9989 0.9926 0.9968 0.0084 0.0072 0.0046 0.0042

3 wilson 0.9851 0.9933  0.9884  0.9955 0.9941 0.9987 0.9925 0.9966 0.0083  0.0071 0.0046  0.0042

4 JEF 0.9853 0.9935  0.9887  0.9956 0.9944 0.9988 0.9926 0.9967 0.0081  0.0070 0.0044 0.0041
Table 58: Oversample DR = 0.1% to DR=0.1%, less than 5 features and 5 extra

CI type accur_L accur_U prec_L prec_U recall L recall U fl L f1_U accur_ W prec. W recall W f1_W

0 normal 0.9853 0.9937  0.9886  0.9958 0.9951 0.9994 0.9926 0.9968 0.0083 0.0072 0.0043 0.0042

1 AC 0.9844 0.9930  0.9877  0.9952 0.9940 0.9988 0.9921 0.9965 0.0086  0.0075 0.0049 0.0043

2 beta 0.9846 0.9932  0.9879  0.9953 0.9943 0.9989 0.9922 0.9966 0.0086  0.0075 0.0046  0.0043

3 wilson 0.9845 0.9929  0.9877  0.9951 0.9941 0.9987 0.9922 0.9964 0.0085 0.0073 0.0046  0.0043

4 JEF 0.9847 0.9931  0.9880  0.9953 0.9944 0.9988 0.9923 0.9965 0.0083 0.0072 0.0044 0.0042
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